The Crystal Structure of Cesium Tribromide and a Comparison of the Br_{3}^{-}and I_{3}^{-}Systems

By Gary L. Breneman* and Roger D. Willett
Department of Chemistry, Washington State University, Pullman, Washington 99163, U.S.A.

(Received 31 January 1967 and in revised form 22 April 1968)

Abstract

The crystal structure of CsBr_{3} has been determined by X -ray diffraction techniques. The unit cell is orthorhombic with $a=6.52, b=10.04$ and $c=9.54 \AA$. The space group is Pmnb. The tribromide ion is nearly linear, but unsymmetrical, with $\mathrm{Br}-\mathrm{Br}$ distances of 2.440 and $2.698 \AA$. The Br_{3}^{-}ions in this compound, in PBr_{7}, and in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]_{2} \mathrm{Br}^{-} \mathrm{Br}_{3}^{-}$form a system analogous to that of I_{3} in which the configuration of the trihalide ion depends on the cation present in the crystal. A qualitative discussion comparing the two systems is given.

Introduction

Structural studies of the tribromide ion previously done have shown that Br_{3}^{-}in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]_{2} \mathrm{Br}^{-} \mathrm{Br}_{3}^{-}$(Romers \& Keulemans, 1958) is an essentially symmetrical ion with the two bond lengths almost equal while Br_{3}^{-}in PBr_{7} ($\mathrm{Breneman}^{2}$ Willett, 1967) is extremely distorted from the symmetrical configuration with the two bond lengths differing by more than $0.5 \AA$. Both of these Br_{3}^{-}ions are essentially linear. It was observed that PBr_{7} lost bromine very rapidly when taken out of a bromine environment while $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]_{2} \mathrm{Br}^{-} \mathrm{Br}_{3}^{-}$was much more stable under the same conditions. Since the stability of CsBr_{3} was observed to be intermediate to these other two compounds it was hoped that the configuration of Br_{3}^{-}in CsBr_{3} would also be intermediate to the other two compounds thus forming a system of tribromide ions analogous to that found for triiodide ions whose configurations vary with the cation present in the crystal.

Experimental

The compound was prepared by adding a large amount of Br_{2} to a concentrated solution of CsBr in water.

* Work performed while an NSF predoctoral Fellow.

The CsBr_{3} was recrystallized from bromine water to obtain crystals suitable for diffraction study. A single crystal $0.10 \times 0.13 \times 0.22 \mathrm{~mm}$ was mounted in a Lindemann glass capillary.
Lattice constants were measured and intensity data collected on a Picker diffractometer equipped with a General Electric single crystal orienter using Mo $K \alpha$ radiation. The lattice constants of the orthorhombic unit cell were found to be $a=6 \cdot 522 \pm 0 \cdot 005, b=10.037$ ± 0.003, and $c=9.539 \pm 0.009 \AA$. The $\theta-2 \theta$ scan method was used for measuring intensities with background measured at the beginning and end of each scan. 425 unique non-zero intensities were measured. Weissenberg photographs with $\mathrm{Cu} K \alpha$ radiation showed systematic absences for $h 0 l, h+l=2 n+1$, and for $h k 0$, $k=2 n+1$ indicating the space group to be Pmnb or $P 2{ }_{1} n b$. Solution of the structure within the space group Pmnb proved this to be the correct choice.

Determination of the structure

Since the choice of space groups for CsBr_{3} was the same as for CsI_{3} (Tasman \& Boswijk, 1955) and the lattice constants of CsBr_{3} were only slightly smaller than for CsI_{3}, it was assumed that the two structures were isomorphic. Structure factors calculated using the CsI_{3} parameters resulted in $R=0.382$ and $R_{W}=0.357$

Table 2. Observed and calculated structure factors for CsBr_{3}
The columns contain $k, l, 10\left|F_{0 \text { bs }}\right|$, and $10 F_{\text {calc }}$. Reflections suffering from extinction are denoted by an asterisk. Unobserved reflections are denoted by negative $10\left|F_{11}\right|$ in the $\mid F_{0}$ ob \mid column.

$H=0$				9	1	396413	7	6	-63	-57	6	7	-64	-96	6	4	-60	-3	8	2	-67	39
				9	2	$96-30$	7	7	247	263	6	8	-68	22	6	5	238	234	8	3	-69	6
0	2	614	679	9	3	-66 82	8	0	143	-141	7	1	155	-129	6	6	180	-187				
0	4	225	228	9	4	-68 78	8	1	88	79	7	2	197	-196	6	7	-66	-38			$H=$	5
0	6	623	-663	9	5	178-198	8	2	-60	31	7	3	160	-163	7	1	324	324				
0	8	109	-76	10	0	-69 26	8	3	653	672	7	4	106	64	7	2	88	-60	0	1	-56	30
01		220	-220	10	1	$108-95$	8	4	144	112	7	5	-62	30	7	3	300	302	0	3	344	-363
1	1	. 194	-131	10	2	192196	8	5	161	158	7	6	197	212	7	4	124	-113	0	5	102	96
1	2	196	-195	10	3	-70-77	8	6	94	61	7	7	-67	6	7	5	127	83	0	7	-70	-86
1	3	106	-58				9	1	233	223	8	0	395	414	7	6	103	40	1	1	-58	-35
1	4	763	-854	$H=1$			9	2	167	-137	8	1	-61	5	8	0	127	107	1	2	318	329
1	5	127	137				9	3	170	175	8	2	-62	-70	8	1	-63	-71	1	3	200	-219
1	6	684	-737	0	1	$161 \quad 167$	9	4	-69	29	8	3	-64	-2	8	2	-64	-23	1	4	255	225
1	7	273	-258	0	3	*836-1021	9	5	-68	67	8	4	108	107	8	3	502	-516	1	5	189	-204
1	8	256	-271	0	5	$280 \quad 272$	10	0	167	179	8	5	144	-128	8	4	-68	-87	1	6	117	141
1	9	-66	0	0	7	175-202	10	1	103	-93	8	6	-67	-47	8	5	125	-135	1	7	-68	45
11	0	128	133	0	9	111-113	10	2	-69	-95	9	1	346	-366	9	1	164	-177	2	0	214	218
2	0	498	-504	1	1	-29-64	10	3	-70	88	9	2	98	26	9	2	-68	102	2	1	282	286
2	1	78	51	1	2	766848	$H=2$				9	3	-68	-72	9	3	114	-138	2	2	486	467
2	2	852	-887	1	3	526-541					9	4	-70	-68	$H=4$				2	3	152	146
2	3	671	-660	1	4	465480					10	0	-71	-27					2	4	120	109
2	4	322	331	1	5	478-477	0 0*1652-2483	0*1652-2483			10	1	-70	84	0 0*12971467				2	5	202	199
2	5	427	429	1	6	315310	0	2	544	-579	10	2	173	-171					2	6	-66	-45
2	6	134	-105	1	7	159116	0	4	181	-186					0	2	375	396	3	1	241	221
2	7	189	194	1	8	107 -71	0	6	524	570	$H=3$				0	4	116	108	3	2	446	-435
2	8	118	103	1	9	144143	0	8	-64	75					0	6	363	-374	3	3	150	156
2	9	127	159	1	0	-72 46	1	1	164	108	0				0	8	127	-67	3	4	391	-385
21	0	-71	16	2	0	413402	1	2	166	173	0	3	625	693	1	1	-51	-61	3	5	-65	-71
3	1	800	865	2	1	779816	1	3	69	47	0	5	179	-188	1	2	122	-125	3	6	120	-107
3	2	176	-159	2	2	10571186	1	4	670	727	0	7	127	150	1	3	-51	-25	4	0	252	-261
3	3	-41	11	2	3	308294	1	5	118	-112	0	9	-71	94	1	4	460	-479	4	1	-59	-19
3	4	308	-268	2	4	236222	1	6	603	642	1	1	104	59	1	5	-57	62	4	2	-60	-63
3	5	101	-102	2	5	462470	1	7	217	223	1	2	573	-584	1	6	408	-436	4	3	-63	-103
3	6	146	134	2	6	$90-50$	1	8	220	237		3	366	385	1	7	107	-148	4	4	345	-338
3	7	-58	30	2	7	$112-52$	1	9	-68	2	1	4	362	-363	1	8	136	-161	4	5	-65	-113
3	8	-63	-4	2	8	498-519	2	0	442	424	1	5	341	353	2	0	302	-280	4	6	-68	55
3	9	-67	77	2	9	143138	2	1	-38	-34	1	6	228	-235	2	1	-50	4	5	1	-62	-61
4	0	677	-704	3	1	519504	2	2	738	721	1	7	-61	-84	2	2	457	-436	5	2	109	102
4	1	515	512	3	2	997-1045	2	3	563	540	1	8	-65	50	2	3	353	-332	5	3	142	117
4	2	420	-413	3	3	402376	2	4	278	-271	1	9	154	-111	2	4	1.40	158	5	4	-64	68
4	3	641	-596	3	4	834-860	2	5	365	-361	2	0	344	-318	2	5	216	222	5	5	-66	60
4	4	125	132	3	5	-51-168	2	6	115	87	2	1	560	-542	2	6	-61	-50	6	0	164	-158
4	5	350	-342	3	6	228-195	2	7	173	-172	2	2	829	-828	2	7	113	121	6	1	197	-233
4	6	229	223	3	7	114-108	2	8	143	-89	2	3	231	-227	2	8	-68	58	6	2	-65	78
4	7	558	-549	3	8	96-126	2	9	153	-139	2	4	169	-172	3	1	450	443	6	3	182	-189
4	8	146	153	3	9	210-209	3	1	717	-714	2	5	344	-346	3	2	107	-94	6	4	-67	11
4	9	-70	53	4	0	651-664	3	2	136	136	2	6	-57	51	3	3	-54	15	7	1	183	-206
5	1	943-	1017	4	1	$63-23$	3	3	-45	-14	2	7	-61	31	3	4	132	-150	7	2	-68	39
5	2	125	115	4	2	$87-64$	3	4	231	229	2	8	393	401	3	5	-60	-54				
5	3	225	-207	4	3	240-210	3	5	137	86	2	9	-70	-105	3	6	103	67			$H=$	6
5	4	276	265	4	4	798-817	3	6	117	-112	3	1	373	-367	3	7	-66	21				
5	5	183	169	4	5	239-229	3	7	-61	-27	3	2	775	752	4	0	399	-392	0	0	722	-736
5.	6	452	487	4	6	154150	3	8	-65	1	3	3	279	-272	4	1	247	239	0	2	220	-234
5	7	206	217	4	7	144-108	3	9	125	-66	3	4	639	644	4	2	221	-234	0	4	-67	-47
5	8	-65	41	4	8	143142	4	0	594	596	3	5	122	124	4	3	352	-322	1	1	-64	25
5	9	130	89	4	9	-71 70	4	1	434	-414	3	6	159	158	4	4	109	73	1	2	-62	78
6	0	441	464	5	1	127-148	4	2	368	353	3	7	-63	91	4	5	196	-220	1	3	-63	9
6	1	399	396	5	2	269251	4	3	550	504	3	8	99	98	4	6	95	139	1	4	242	259
6	2	517	516	5	3	302284	4	4	125	-113	4	0	456	471	4	7	337	-319	1	5	-68	-23
6	3	190	186	5	4	203167	4	5	319	305	4	1	-49	. 22	5	1	568	-581	2	0	155	157
6	4	259	-246	5	5	125120	4	6	192	-198	4	2	103	69	5	2	-57	72	2	1	-62	10
6	5	566	567	5	6	-57-22	4	7	502	478	4	3	180	162	5	3	152	-129	2	2	253	214
6	6	109	33	5	7	-61 56	4	8	152	-137	4	4	587	599	5	4	164	169	2	3	200	163
6	7	138	105	5	8	164135	4	9	-72	-44	4	5	184	179	5	5	-62	103	2	4	-66	-68
6	8	-66	-26	6	0	381-381	5	1	839	874	4	6	114	-106	5	6	274	287	3	1	239	-224
7	1	125	145	6	1	558-556	5	2	113	-101	4	7	118	83	6	0	260	278	3	2	106	55
7	2	246	226	6	2	225222	5	3	215	183	4	8	120	-114	6	1	222	217	3	3	-66	-13
7	3	196	188	6	3	388-382	5	4	227	-235	5	1	75	108	6	2	303	288	3	4	-68	79
7	4	96	-74	6	4	-56-5	5	5	132	-149	5	2	178	-183	6	3	129	134	4	0	200	214
7	5	-59	-35	6	5	329-306	5	6	428	-425	5	3	209	-209	6	4	128	-129	4	1	110	-102
7	6	231	-241	6	6	226246	5	7	180	-193	5	4	91	-122	6	5	315	336	4	2	147	128
7	7	-65	-5	6	7	-63 57	5	8	-67	-38	5	5	128	-95	6	6	-66	15	4	3	172	164
8	0	447	-482	6	8	-67-25	6	0	372	-406	5	6	-61	14	7	1	-63	93	5	1	320	313
8	1	-59	-6	7	1	397-412	6	1	319	-338	5	7	-65	-41	7	2	176	130	5	2	-68	-44
8	2	-59	86	7	2	$127 \quad 75$	6	2	450	-443	6	0	261	280	7	3	-65	110				
8	3	-61	0	7	3	390-390	6	3	169	-171	6	1	404	410	7	4	-67	-41			$H=$	7
8	4	142	-125	7	4	138148	6	4	214	209	6	2	172	-156	7	5	-67	-17				
8	5	156	146	7	5	128-113	6	5	494	-495	6	3	311	300	8	0	255	-266	c	1	-74	-4
8	6	-65	58				6	6	-61	-27					8	1	-66	-2				

Fig.1. Packing diagram for CsBr_{3} along the [100] direction. Shaded atoms are at $x=\frac{1}{4}$; other atoms are at $x=\frac{3}{4}$.

Fig.2. Arrangement of Cs^{+}ions around the two ends of the $\mathrm{Br}_{3}{ }^{-}$ion viewed parallel to the mirror plane at $x=\frac{1}{4}$.

Fig. 3. Known configurations of the tribromide ion.
(see Table 1 for definition of R and R_{W}). After refining the positions and isotropic temperature factors for several cycles using a FORTRAN least-squares program (Busing, Martin \& Levy, 1962) on an IBM 709 computer, values of $R=0 \cdot 149$ and $R_{W}=0 \cdot 158$ were obtained. On conversion to anisotropic temperature factors and introduction of individual weights the refinement proceeded until values of $R=0 \cdot 108$ and $R_{W}=$ 0.099 were obtained. A difference Fourier synthesis showed nothing of significance, indicating that the refinement had converged.

At this point absorption corrections were made on the data. All reflections which had a total count minus background less than 200 were called unobserved and removed from the refinement. This left 326 observed reflections. The unobserved reflections were set equal to one half of the minimum observed intensity for comparison purposes in the final structure factor calculation. Three of the observed reflections that appeared to be suffering from extinction were also removed from the refinement at this point. The refinement then proceeded until values of $R=0.068$ and $R_{W}=0.090$ were obtained. The weighting scheme used was as follows:

$$
\begin{gathered}
\text { weight }=1 / \sigma^{2} \\
\sigma^{2}=F^{2} / 4 A I^{2}\left[E+2 B+(0 \cdot 1 I)^{2}\right],
\end{gathered}
$$

where F is the structure factor, A is the absorption correction, I is the intensity, E is total counts, and B is the average background.
Table 1 lists the final atomic parameters and standard deviations. The atomic scattering factors for bromine were taken from Table 3.3.1A of International Tables for X-ray Crystallography, 1962). The atomic scattering factors used for Cs^{+}were those of Thomas \& Umeda (1959). The atomic scattering factors for Cs^{+}were corrected for the real part of anomalous dispersion. Table 2 lists the observed and calculated structure factors.

Discussion of the structure

CsBr_{3} is isostructural with CsI_{3} (Tasman \& Boswijk 1955) and $\mathrm{CsI}_{2} \mathrm{Br}$ (Carpenter, 1966) as predicted by Wells \& Penfield (1892). The structure consists of Cs^{+} ions and linear asymmetrical Br_{3}^{-}ions all lying on mirror planes at $x=\frac{1}{4}$ and $\frac{3}{4}$. Four tribromide ions in the same plane form a box for the Cs^{+}ion to sit in, while bromine atoms in the plane above and below the Cs^{+}form triangles. This results in the coordination around the Cs^{+}ion being a trigonal prism with four bromine atoms around the middle of the prism. This can be seen in Fig. 1 which shows the packing of the ions. Figs. 1 and 2 were both drawn with a program furnished by Johnson (1965). Fig. 1, also shows a zigzag chain formed by the tribromide ions similar to that found in PBr_{7} (Breneman \& Willett, 1967).

Fig. 2 shows the arrangement of Cs atoms around the two ends of the tribromide ion. Note that the cations are arranged more closely around the end of
the tribromide ion with the longer bond. This case is typical of all the asymmetrical trihalides found so far. Table 3 lists the bond lengths and bond angle found in the tribromide ion. The elongation of Br_{3}^{-}in CsBr_{3} is about midway between the symmetrical Br_{3}^{-}in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]_{2} \mathrm{Br}^{-}-\mathrm{Br}_{3}^{-}$and the highly elongated Br_{3}^{-}in PBr_{7}. Fig. 3 compares these ions.

Table 3. Bond lengths and angle

 for tribromide ion in CsBr_{3}| Bond lengths | |
| :---: | :---: |
| $\operatorname{Br}(1)-\operatorname{Br}(2)$ | $2.698 \pm 0.006 \AA$ |
| $\operatorname{Br}(2)-\operatorname{Br}(3)$ | 2.440 ± 0.006 |
| Bond angle | |
| $\operatorname{Br}(1)-\operatorname{Br}(2)-\operatorname{Br}(3)$ | $177.5 \pm 0.2^{\circ}$ |

Comparison of Br_{3}^{-}and I_{3}^{-}systems

An empirical approach to the existence of symmetrical and asymmetrical I_{3} ions has been proposed by Mooney-Slater (1959) and Slater (1959). In this approach to the problem no specific type of bonding is assumed. Rather the $\mathrm{I}_{2}-\mathrm{I}^{-}$system is compared with the simple triatomic system $\mathrm{H}_{2}-\mathrm{H}$ in which it has been shown that the equilibrium position of the central hydrogen atom is a function of the total distance between the end atoms. In the $\mathrm{H}_{2}-\mathrm{H}$ system when the total length, D, of the molecule is above a critical value, D_{c}, the energy of the H_{3} molecule shows two minima between the end atoms. As D decreases these minima approach each other and when $D=D_{c}$ the two minima merge into a single minimum, thus giving two possible configurations to the H_{3} molecule depending on its total length.

The configurations which have been found for the tribromide ion also show a dependence on the total length of the ion. The Br_{3}^{-}ion in PBr_{7} is the most elongated of the three and is $5 \cdot 30 \AA$ long. The Br_{3}^{-}ion in CsBr_{3} has an intermediate configuration and is $5 \cdot 14 \AA$ long while the Br_{3}^{-}ion in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]_{2} \mathrm{Br}^{-} \mathrm{Br}_{3}^{-}$is nearly symmetrical and is only $5.07 \AA$ long.

The structure data for Br_{3}^{-}are plotted in Fig. 4 in the same manner as the I_{3}^{-}data were treated by MooneySlater (1959). The total ion length, D, is taken as the sum of the short bond length, d_{1}, and the long bond length, d_{2}, ignoring the small deviations from linearity of the ions. The curve exhibited by the Br_{3}^{-}system is very similar to that of the I_{3}^{-}system. In the tribromide case the critical ion length, D_{c}, where the ion becomes symmetrical appears to be about $5 \cdot 07 \AA$.

To better compare the tribromide system with the triiodide system, D / D_{c} was plotted against $d /\left(\frac{1}{2} D_{c}\right)$ in Fig. 5 using the data for both Br_{3}^{-}and I_{3}^{-}. The two systems are very similar. Relative to the symmetric ions the tribromide ion distorts more rapidly with increasing ion length than the triiodide ion. This difference is probably due mainly to differences in electronegativity and polarizability.

Fig.4. Comparison of bond lengths and total ion lengths of the known tribromide ions.

Fig. 5. Comparison of $\mathrm{Br}_{3}{ }^{-}$and $\mathrm{I}_{3}{ }^{-}$configurations. D_{c} is the critical ion length where the ion becomes symmetrical.

References

Breneman, G. L. \& Willett, R. D. (1967). Acta Cryst. 23, 467.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). U.S. Atomic Energy Commission Report ORNL-TM305.

Carpenter, G. B. (1966). Acta Cryst. 20, 330.
International Tables for X-ray Crystallography (1962). Vol.III. Birmingham: Kynoch Press.
Johnson, C. K. (1965). U.S. Atomic Energy Commission Report ORNL-3794.
Mooney-Slater, R. C. L. (1959). Acta Cryst. 12, 187.
Romers, C. \& Keulemans, E. W. M. (1958). Proc. Koninkl. Ned. Akad. Wetenschap. B61, 345.
Slater, J. C. (1959). Acta Cryst. 12, 197.
Tasman, H. A. \& BoswiJk, K. H. (1955). Acta Cryst. 8, 59. Thomas, L. \& Umeda, K. (1959). J. Chem. Phys. 26, 293. Wells, H. L. \& Penfield, S. L. (1892). Z. Anorg. Chem. 1, 85.

